isanet.datasets¶
isanet.datasets.monk module¶
-
isanet.datasets.monk.
load_monk
(dataset='1', type='train')¶ Load and return the one of the Monk dataset (Classification Task). The monk datasets are a classic and very easy class classification dataset.
- Parameters
dataset (string ("1", "2", "3"), default = "1") – define which monks dataset load
type (string ("train", "test"), default = "train) – define which type of dataset you want to load: train or test
Note
The one hot encoder is applied to the data variable: each row is a feature of X Data of a monk dataset and and its related encoding.:
{ 0: [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 1: [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 2: [[1,0],[0,1]], 3: [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 4: [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], 5: [[1,0],[0,1]] }
Monk 1
Classes
2
2
Samples total
124
432
Data X Dimensionality
17
17
Data X Type
bool
bool
Data Y Dimensionality
1
1
Data Y Type
bool
bool
Monk 2
Classes
2
2
Samples total
169
432
Data X Dimensionality
17
17
Data X Type
bool
bool
Data Y Dimensionality
1
1
Data Y Type
bool
bool
Monk 3
Classes
2
2
Samples total
122
432
Data X Dimensionality
17
17
Data X Type
bool
bool
Data Y Dimensionality
1
1
Data Y Type
bool
bool
isanet.datasets.iris module¶
-
isanet.datasets.iris.
load_iris
()¶ Load and return the iris dataset (Classification Task). The iris dataset is a classic and very easy multi-class classification dataset.
Note
The one hot encoder is applied to the target variable:
{ "Iris-setosa": [1, 0, 0], "Iris-versicolor": [0, 1, 0], "Iris-virginica": [0, 0, 1] }
Classes
3
Samples per class
50
Samples total
150
Data X Dimensionality
4
Data X Type
real
Data Y Dimensionality
3
Data Y Type
bool