isanet.datasets

isanet.datasets.monk module

isanet.datasets.monk.load_monk(dataset='1', type='train')

Load and return the one of the Monk dataset (Classification Task). The monk datasets are a classic and very easy class classification dataset.

Parameters
  • dataset (string ("1", "2", "3"), default = "1") – define which monks dataset load

  • type (string ("train", "test"), default = "train) – define which type of dataset you want to load: train or test

Note

The one hot encoder is applied to the data variable: each row is a feature of X Data of a monk dataset and and its related encoding.:

{
    0: [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
    1: [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
    2: [[1,0],[0,1]],
    3: [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
    4: [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
    5: [[1,0],[0,1]]
}

Monk 1

Classes

2

2

Samples total

124

432

Data X Dimensionality

17

17

Data X Type

bool

bool

Data Y Dimensionality

1

1

Data Y Type

bool

bool

Monk 2

Classes

2

2

Samples total

169

432

Data X Dimensionality

17

17

Data X Type

bool

bool

Data Y Dimensionality

1

1

Data Y Type

bool

bool

Monk 3

Classes

2

2

Samples total

122

432

Data X Dimensionality

17

17

Data X Type

bool

bool

Data Y Dimensionality

1

1

Data Y Type

bool

bool

isanet.datasets.iris module

isanet.datasets.iris.load_iris()

Load and return the iris dataset (Classification Task). The iris dataset is a classic and very easy multi-class classification dataset.

Note

The one hot encoder is applied to the target variable:

{
    "Iris-setosa": [1, 0, 0],
    "Iris-versicolor": [0, 1, 0],
    "Iris-virginica": [0, 0, 1]
}

Classes

3

Samples per class

50

Samples total

150

Data X Dimensionality

4

Data X Type

real

Data Y Dimensionality

3

Data Y Type

bool